Posts Taged robot

CEATEC Japan 2018でパーソナルロボットシステムを初公開、全自動お片付けロボットシステムを展示

株式会社Preferred Networks(本社:東京都千代田区、代表取締役社長CEO:西川徹、以下、PFN)は、幕張メッセで開催されるCEATEC JAPAN 2018において、現在開発中のパーソナルロボットシステムの技術デモとして「全自動お片付けロボットシステム」を初公開します。

PFNでは、ロボットが身近な場所で活躍する社会の実現に向けて、パーソナルロボットの技術開発を進めています。工場などの規格化された環境と異なり、人間の生活空間で働くロボットには、複雑で変化する状況への柔軟な対応や、人との自然なコミュニケーションが求められます。

今回、PFNブース(A060)では、トヨタ自動車株式会社が開発する ”生活支援ロボットHSR(Human Support Robot)” を使い、従来の物体認識・ロボット制御技術では困難だった「散らかった部屋の全自動お片付け」のデモンストレーションを行います。ロボットが、乱雑に置かれた洋服、おもちゃ、文房具など、家庭にある様々な物体を認識してつかみ、所定の場所に片付けていきます。また、ロボットに対して人が口頭やジェスチャーで片付け指示を出すなど、直感的なコミュニケーションによるロボット操作もご覧いただけます。

全自動お片付けロボットシステムの詳細は特設ページをご覧ください。
https://projects.preferred.jp/tidying-up-robot/

この全自動お片付けロボットシステムは、CEATEC JAPAN 2018に展示されるイノベーション性が高く優れている技術・製品・サービス等を表彰する「CEATEC AWARD 2018」 において、インダストリ/マーケット部門の準グランプリに選ばれました。

  • PFN展示ブース

・期間:2018年10月16日(火)~19日(金)10:00~17:00

・展示エリア:トータルソリューションエリア  ホール2(ブース番号A060)

・展示内容:パーソナルロボットの技術デモ「全自動お片付けロボットシステム」(初公開)

 

また、開幕初日の基調講演CEATEC Keynote Futureに代表の西川徹が登壇し、「すべての人にロボットを」と題した講演を行います。講演では、PFNが注力する最先端の機械学習・深層学習技術とロボティクスを応用することで、実世界の課題をどのように解決するか、また、今後の技術の展望についてご紹介します。

  • 基調講演CEATEC Keynote Future

・日時:2018年10月16日(火)12:30~13:15

・会場:幕張メッセ 国際会議場 コンベンションホール

・講演者:株式会社Preferred Networks 代表取締役社長 CEO 西川徹

・講演概要:すべての人にロボットを

機械学習技術の発展により、ロボットの可能性は急速に拡大しています。様々な状況への柔軟な対応や、より人に近い作業をロボットが行うには、機械学習技術とロボティクスの融合が必要不可欠です。今後はより多くの場所で、人々がロボットの力を活用する場面が増えてくるでしょう。そのような新しいロボットの時代に、テクノロジーがどのように活用されうるのか、今の技術と今後の展望、そして私たちの新しい取り組みについて講演する予定です。

ロボットの国際学会ICRA 2018で、 Preferred Networksの論文がHuman-Robot Interaction(HRI)部門の Best Paper Awardを受賞

ロボット分野の主要国際会議のひとつ、米国電気電子学会(IEEE)が主催するICRA(International Conference on Robotics and Automation)が、2018年5月21日~25日の日程でブリスベンにて開催されました。その中で、PFNの論文「Interactively Picking Real-World Objects with Unconstrained Spoken Language Instructions」が Human-Robot Interaction(HRI)部門においてBest Paper Awardを受賞しました。

受賞式(左から、小林颯介、羽鳥潤、1人とばして高橋城志、Ko Wilson)

受賞式の後で(左から、小林颯介、羽鳥潤、高橋城志、Ko Wilson)

 

PFNでは、人間とロボットのコミュニケーション手段に最新の画像処理技術と自然言語処理技術を適用する研究を行い、人間の自由な話し言葉(音声言語命令)によってロボットのオブジェクトピッキングタスクを操作できるインタラクティブシステムを構築しています。

 

PFNの論文「Interactively Picking Real-World Objects with Unconstrained Spoken Language Instructions」の詳細と動画は、こちらのサイトをご覧ください。

https://pfnet.github.io/interactive-robot/

 

PFNは今後も、最新技術の研究開発と、その産業応用を推進していきます。