Posts on May 2017

お絵描きコミュニケーションアプリ「pixiv Sketch」と線画自動着色サービス「PaintsChainer」が連携。イラストの自動着色機能を提供開始!

AIがイラスト制作の「着色」をサポート!イラスト上の顔や服装、風景等を認識し、自動的に着色する新機能を提供

ピクシブ株式会社(代表取締役社長:伊藤浩樹、本社:東京都渋谷区)とAIベンチャーの株式会社Preferred Networks(代表取締役社長:西川徹、本社:東京都千代田区、以下、PFN)は提携し、お絵描きコミュニケーションプラットフォーム「pixiv Sketch(ピクシブスケッチ)」に、新たにAI技術による線画自動着色サービス「PaintsChainer(ペインツチェイナー)」の機能を追加し、2017年5月24日(水)より提供開始します。

 

pixiv Sketchは、PCやスマートフォン等のデバイスを通じてお絵描きしたものをそのまま投稿できるコミュニケーションプラットフォームです。部屋の中でくつろいでいる時も、友達と外で遊んでいる時も、いつでもどこでも気軽にお絵描きをして、お絵描きを投稿することでコミュニケーションをリアルタイムに体験できます。
この度pixiv Sketchに追加する機能は、PFNが開発・提供する深層学習フレームワークChainerを使って線画および着色イラストを学習させたPaintsChainerの、塗る色を自動判断できる技術が使われています。

 

これはイラスト制作のうちの「着色」という重要な工程を手助けしてくれるもので、pixivSketch上で描いた絵や外部画像ファイルを選択して自動着色ボタンをクリックするだけで、AIがイラスト上の顔や服装、風景等を認識し、自動的に色が塗られます。また色の調整も可能で、カラーパレットから線画上の任意の箇所に、好きな色をヒントとして指定して自動着色することもできます。

 

ピクシブとPFNは、今後もAI技術や研究を通して、お絵描きをより身近で楽しいものに変えるべく、価値のあるサービス提供をしてまいります。

 

 

■下記①~④のお絵描き工程のうち、③着色工程に自動着色機能を使うことができます

■pixivSketchでの自動着色機能

  • 対応開始 :5月24日(水)
  • 費用:無料
  • URL:https://sketch.pixiv.net/ (※WEB版のみ対応)
  • 主な利用方法
    ① 線画を描く、もしくは画像を選択
    ②「自動着色」ボタンで自動着色する
    ③ 2種類から好みの着色パターンを選択
    ④ 必要に応じて、色のヒントをカラーパレットから入力し、着色を調整
    ⑤ 色指定の後、矢印ボタンをクリックし、完成!

 

 

■pixiv Sketchとは  https://sketch.pixiv.net/

「日々のお絵描きをもっと気軽で楽しいものにしたい」という想いで立ち上げた、お絵描きコミュニケーションプラットフォーム。PCやスマートフォン等のデバイスを通じて、いつでもどこでもお絵描きしたものを投稿できるサービスです。

■PaintsChainerとは  https://paintschainer.preferred.tech/

PFNが開発・提供し、2017年1月のサービス公開と同時にTwitter等で大きな反響のあった、オンライン線画自動着色サービス。白黒等で描かれた線画ファイルをアップロードするだけで、深層学習の技術を使って完全自動着色または色指定の自動着色をすることができます。

 

■株式会社Preferred Networks  https://www.preferred-networks.jp/ja/

IoTにフォーカスした深層学習技術のビジネス活用を目的に、2014年3月に創業。デバイスが生み出す膨大なデータを、ネットワークのエッジで分散協調的に処理する「エッジヘビーコンピューティング」を提唱し、交通システム、製造業、バイオ・ヘルスケアの3つの重点事業領域において、イノベーションの実現を目指している。最先端の深層学習技術を提供するDeep Intelligence in-Motion(DIMo、ダイモ)プラットフォームをベースとしたソリューションの開発・提供をはじめ、トヨタ自動車株式会社、ファナック株式会社、国立がん研究センターなどの世界をリードする組織と協業し、先進的な取り組みを推進している。

所在地:東京都千代田区大手町1-6-1 大手町ビル2F

代表取締役社長:西川徹

設立日:2014年3月26日

 

■ピクシブ株式会社  http://www.pixiv.co.jp

所在地 : 東京都渋谷区千駄ヶ谷4-23-5 JPR千駄ヶ谷ビル2F

代表取締役社長:伊藤浩樹

事業内容:インターネットサービス事業

設立日:2005年7月25日

 

*Chainer(R)、DIMo(TM)は、株式会社Preferred Networksの日本国およびその他の国における商標または登録商標です。

*その他、記載されている会社名、製品名は、各社の登録商標または商標です。

Preferred Networksとマイクロソフト、ディープラーニングソリューション分野で戦略的協業

株式会社Preferred Networks(本社:東京都千代田区、代表取締役社長 最高経営責任者:西川徹、以下、PFN)とマイクロソフト コーポレーション(本社:米国ワシントン州レドモンド、CEO:サティア ナデラ、以下マイクロソフト)は、人工知能や深層学習の実社会での活用を推進するため、ディープラーニングソリューション分野において戦略的協業することで合意しました。

今回の協業により、マイクロソフトのパブリッククラウドプラットフォームMicrosoft AzureとPFNの深層学習テクノロジーの連携を推進し、各業種業態のビジネス課題を解決する深層学習ソリューションを提供します。本協業の日本市場における展開を、日本マイクロソフト株式会社(本社:東京都港区、代表取締役 社長:平野 拓也)が全面的に支援します。

 

両社は、本協業を通して①テクノロジー、②人材育成、③マーケティング、の3つの軸で連携を進めます。

1.テクノロジー:

  • 深層学習に関わる技術者の課題として、複雑化するニューラルネットの学習時間の増大、増加し続けるデータの煩雑な管理、絶え間なく技術革新するアルゴリズムへの対応、深層学習を用いたシステム開発の方法論などが挙げられます。今回の協業では、2017年夏に、Microsoft AzureのIaaS と PFNの深層学習フレームワーク Chainerの親和性を高め、Chainer / ChainerMN(Multi Node)をワンクリックでAzure IaaS 上に展開する Azure Templateの提供、データサイエンスVMへのChainer 搭載、Azure Batch ServicesおよびSQL ServerのChainer対応、そしてChainerのWindows対応などを進めることで、課題の解消を図ります。

 

  • 現在主流であるニューラルネットワークのスクラッチ開発は高度な技術的知識が求められ、必要とされる投資金額も非常に大きくなっています。深層学習の実社会への適用を推進するためにはスクラッチ開発から、標準化されたソリューションへの移行が必須です。これを推進するため、Microsoft Azureのデータ収集分析サービスとPFNの深層学習プラットフォーム Deep Intelligence in-Motion(DIMo、ダイモ)を組み合わせ、特定のワークロードや業種向けソリューションを2017年中に提供します。また、そのソリューションを展開するパートナーを両者で支援し育成を行い、より広い実社会への実装を加速させていきます。

2.人材育成:

  • データサイエンス人材の育成は深層学習の実社会への応用の主要な課題の1つです。この課題を解消するために両社が連携し、大学の学生、企業内のエンジニア・研究者向けのトレーニングプログラムを2017年中に提供します。また、高等教育機関向けには政府機関などのデータ関連人材育成プログラムへの参加を検討していきます。

 

  • トレーニングプログラムはニューラルネットワークの基礎を学ぶ初級クラスだけではなく、実際に深層学習の実ビジネス事例をテーマに応用方法を学ぶ上級クラスまで提供します。これらのトレーニングを通して3年間で5万人の人材育成を計画しています。国際競争力のある IT 人材育成を目的とする世界最大の学生向けの IT コンテストであるImagine CupやAzure for Research などのプログラムをトレーニングのゴールとして用意します。

3.マーケティング:

  • 深層学習は機械学習の手法の1つですが、現在人工知能という広範な意味を含む言葉に含まれる形で多くの人の目に触れています。その結果、お客様のビジネス課題を解決するために深層学習が有効なのかどうか見極めが難しくなっています。これまでマイクロソフトとPFNが培った深層学習ビジネスの知見および、Microsoft Azure、Chainer、DIMoを活用した実際の成功事例をもとに、2017年夏に各業種に向けたお客様ワークショップを開始します。

 

  • Chainer、DIMoが提供する最新の深層学習テクノロジーを、強固なAzure基盤上に組み込むことにより、お客様の基幹システムに組み込めるエンタープライズグレードのエンドツーエンドソリューションを2017年内目途で提供します。

 

  • 深層学習でビジネス課題を解決したいお客様と、深層学習のコンサルティングや展開を行う企業とのマッチングの場として、コミュニティ”Deep Learning Lab(ディープラーニング・ラボ)”を発足し、2017年6月19日(月)および7月25日(火)の両日、コミュニティの主旨説明会を開催します。https://dllab.connpass.com/

 

 

■株式会社Preferred Networksについて

IoTにフォーカスした深層学習技術のビジネス活用を目的に、2014年3月に創業。デバイスが生み出す膨大なデータを、ネットワークのエッジで分散協調的に処理する「エッジヘビーコンピューティング」を提唱し、交通システム、製造業、バイオ・ヘルスケアの3つの重点事業領域において、イノベーションの実現を目指しています。

最先端の深層学習技術を提供するDeep Intelligence in-Motion(DIMo、ダイモ)プラットフォームをベースとしたソリューションの開発・提供をはじめ、トヨタ自動車株式会社、ファナック株式会社、国立がん研究センターなどの世界をリードする組織と協業し、先進的な取り組みを推進しています。(https://www.preferred-networks.jp/ja/)

 

■日本マイクロソフト株式会社について

日本マイクロソフトは、マイクロソフト コーポレーションの日本法人です。マイクロソフトは、モバイル ファースト&クラウド ファーストの世界におけるプラットフォームとプロダクティビティのリーディングカンパニーで、「Empower every person and every organization on the planet to achieve more.(地球上のすべての個人とすべての組織が、より多くのことを達成できるようにする)」を企業ミッションとしています。

日本マイクロソフトは、この企業ミッションに基づき、「革新的で、安心でき、喜んで使っていただけるクラウドとデバイスを提供する会社」を目指します。

 

* Chainer(R)、DIMo(TM)は、株式会社Preferred Networksの日本国およびその他の国における商標または登録商標です。

* Microsoft、Azure、Surface、Cortana は、米国 Microsoft Corporation の米国およびその他の国における登録商標または商標です。

* その他、記載されている会社名、製品名は、各社の登録商標または商標です。

 

オープンソースの深層学習フレームワークChainerに、 マルチノードでの分散学習機能を追加するChainerMN(β版)をリリース

本日、株式会社Preferred Networks(本社:東京都千代田区、代表取締役社長:西川徹、プリファードネットワークス、以下、PFN)は、オープンソースの深層学習フレームワークChainer(チェイナー)に、複数GPUの連携による分散学習機能を追加することで、学習速度を高速化させた追加パッケージ ChainerMN(チェイナー・エムエヌ、「MN」は「Multi Node」の略、https://github.com/pfnet/chainermn)のβ版をリリースしました。

GPUの性能は継続的に向上していますが、より大きなデータを活用し、より精度の高い学習モデルを実現するために、深層学習で使われるモデルのパラメータ数や計算量も増大しています。そのため現在でも、Chainer を含む一般的なフレームワークを用いた標準的な学習では 1週間以上かかるようなユースケースが少なくありませんでした。

PFNでは、より大規模なデータを扱ったり、試行錯誤のイテレーションを効率化するために、複数のGPUを連携させ、マルチノードでの分散学習機能を実装したChainerMNを開発しました。実験では「32ノード/128GPU」を動作させ、「1ノード/1GPU」で約20日を要する学習を、4.4時間で終わらせることに成功しています。

 

  • ChainerMNと他のフレームワークとの性能比較実験

https://research.preferred.jp/2017/02/chainermn-benchmark-results/

128 GPU を用い、速度のために精度を犠牲にしない実用的な同一設定下で、各フレームワークが学習完了に要する時間を比較した実験では、ChainerMN が最も高速という結果になりました。

 

また、GPU 数を変えた時の各フレームワークのスループットでは、1GPU の時にはC++ で記述されたMXNet, CNTK のほうがPython で記述されているChainerMN よりも高速であるものの、128 GPU では、ノード内・ノード間の両方で高速な通信を実現した ChainerMN が最も高速であり、スケーラビリティがあるという結果になりました。

 

ChainerMNは高速でスケーラブルなだけでなく、Chainerのユーザーであれば既存の学習コードから数行の変更をするだけで簡単にChainerMNを利用可能です。

ChainerMNは既に社内の複数のプロジェクトで利用されており、自然言語処理分野や強化学習分野での試用も始まっています。

 

  • オープンソースの深層学習フレームワークChainerについて

PFNが開発・提供するChainerは、Pythonベースのディープラーニング向けフレームワークとして、“Define-by-Run”の手法を通じてユーザーが簡単かつ直感的に複雑なニューラルネットワークを設計するための高い柔軟性とパフォーマンスを兼ね備えています。2015年6月にオープンソース化されたChainerは、最も普及しているディープラーニング向けフレームワークの1つとして、学術機関だけでなく、ディープラーニングがもたらすメリットを現実世界のアプリケーションや研究に活用するための柔軟なフレームワークを求める産業界の多くのユーザーに支持されています。(http://chainer.org/

 

  • 株式会社Preferred Networksについて

IoTにフォーカスした深層学習技術のビジネス活用を目的に、2014年3月に創業。デバイスが生み出す膨大なデータを、ネットワークのエッジで分散協調的に処理する「エッジヘビーコンピューティング」を提唱し、交通システム、製造業、バイオ・ヘルスケアの3つの重点事業領域において、イノベーションの実現を目指しています。

最先端の深層学習技術を提供するDeep Intelligence in-Motion(DIMo、ダイモ)プラットフォームをベースとしたソリューションの開発・提供をはじめ、トヨタ自動車株式会社、ファナック株式会社、国立がん研究センターなどの世界をリードする組織と協業し、先進的な取り組みを推進しています。(https://www.preferred-networks.jp/ja/

 

*Chainer、DIMoは、株式会社Preferred Networksの日本国およびその他の国における商標または登録商標です。